organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Morpholinium 2,4,6-trinitrophenolate

Nagarajan Vembu^a* and Frank R. Fronczek^b

^aDepartment of Chemistry, Urumu Dhanalakshmi College, Tiruchirappalli 620 019, India, and ^bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA

Correspondence e-mail: vembu57@yahoo.com

Received 11 December 2008; accepted 15 December 2008

Key indicators: single-crystal X-ray study; T = 90 K; mean σ (C–C) = 0.002 Å; R factor = 0.029; wR factor = 0.075; data-to-parameter ratio = 9.1.

There are two independent formula units in the asymmetric unit of the title compound, $C_4H_{10}NO^+ \cdot C_6H_2N_3O_7^-$. The morpholinium cations in both molecules are puckered and adopt a chair conformation. Intermolecular $N-H\cdots O$ and $C-H\cdots O$ interactions generate rings of motifs $R_2^1(5)$ and $R_1^2(6)$. The supramolecular aggregation is completed by the presence of two co-operative hydrogen-bonded networks of further $N-H\cdots O$ interactions, which generate an infinite one-dimensional chain along the base vector [100]. Two C- $H\cdots \pi$ interactions are also seen.

Related literature

For a detailed account of the design of organic polar crystals, see: Pecaut & Bagieu-Beucher (1993). For hydrogen bonding in nitrophenol complexes, see: In *et al.* (1997); Zadrenko *et al.* (1997); Mizutani *et al.* (1998). For the supramolecular architecture of molecular complexes of trinitrophenols, see: Botoshansky *et al.* (1994); Vembu *et al.* (2003). For puckering paramaters, see: Cremer & Pople (1975). For hydrogenbonding criteria, see: Desiraju & Steiner (1999); Desiraju (1989); Jeffrey (1997). For graph-set notation, see: Bernstein *et al.* (1995); Etter (1990).

Experimental

Crystal data $C_4H_{10}NO^+ \cdot C_6H_2N_3O_7^-M_r = 316.24$ Triclinic, PI a = 8.3179 (5) Å

b = 9.5733 (5) Å c = 16.8451 (10) Å $\alpha = 91.292 (4)^{\circ}$ $\beta = 98.604 (4)^{\circ}$ $\gamma = 107.589 (4)^{\circ}$ $V = 1261.00 (13) \text{ Å}^{3}$ Z = 4

Cu $K\alpha$ radiation

Data collection

Bruker Kappa APEXII CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 2006) $T_{min} = 0.745, T_{max} = 0.851$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.075$ S = 1.044520 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N20A - H20A \cdots O17B$	0.905 (18)	1.938 (18)	2.8011 (14)	158.9 (15)
$C21A - H21B \cdots O13B$	0.976 (17)	2.485 (16)	3.1491 (16)	125.1 (12)
$C22B - H22C \cdot \cdot \cdot O12B$	0.985 (17)	2.531 (17)	3.3427 (16)	139.6 (12)
$N20A - H20B \cdots O7B^{i}$	0.930 (19)	1.885 (19)	2.6838 (14)	142.6 (15)
$N20A - H20B \cdot \cdot \cdot O15B^{i}$	0.930 (19)	2.225 (18)	2.9229 (15)	131.2 (14)
$C18B - H18C \cdot \cdot \cdot O9B^{i}$	0.954 (17)	2.559 (16)	3.3078 (17)	135.5 (12)
$N20B - H20C \cdot \cdot \cdot O7A^{ii}$	0.888 (18)	1.930 (18)	2.6911 (14)	142.8 (15)
$N20B - H20C \cdot \cdot \cdot O9A^{ii}$	0.888 (18)	2.255 (18)	2.9248 (15)	132.1 (14)
$N20B - H20D \cdots O12A^{iii}$	0.930 (19)	2.528 (17)	2.8693 (14)	102.0 (12)
$C18B - H18D \cdots O10B^{iii}$	0.967 (17)	2.571 (17)	3.1533 (16)	118.8 (12)
$C21B - H21C \cdots O12A^{iii}$	0.956 (16)	2.514 (16)	3.1210 (16)	121.4 (12)
$N20B - H20D \cdots O17A^{iv}$	0.930 (19)	1.946 (19)	2.8182 (14)	155.4 (15)
$C3B - H3B \cdots O16B^{v}$	0.958 (17)	2.495 (18)	3.4394 (17)	168.5 (13)
$C5A - H5A \cdots O10A^{v}$	0.968(17)	2.492 (17)	3.4436 (16)	167.7 (13)
$C18A - H18A \cdots O15A^{vi}$	0.956 (17)	2.474 (17)	3.2628 (17)	139.7 (13)
$C21B - H21D \cdots O15A^{vi}$	0.965 (17)	2.461 (17)	3.3679 (16)	156.6 (12)
$C21A - H21A \cdots O9B^{vii}$	0.972 (16)	2.499 (16)	3.4139 (16)	156.8 (12)
$C21A - H21B \cdots O16A^{viii}$	0.976 (17)	2.473 (16)	3.1274 (16)	124.2 (12)
$C22A - H22B \cdots O13A^{ix}$	0.952 (17)	2.595 (17)	3.3916 (16)	141.3 (13)
$C18A - H18A \cdots Cg4^{ix}$	0.958 (18)	2.906	3.718	140.37
$C22B - H22C \cdots Cg3^{x}$	0.991 (18)	3.152	3.896	133.06

 $\mu = 1.28 \text{ mm}^{-1}$

T = 90.0 (5) K

 $R_{\rm int} = 0.025$

494 parameters

 $\Delta \rho_{\rm max} = 0.25 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.21 \text{ e} \text{ Å}^{-3}$

 $0.25 \times 0.22 \times 0.13 \text{ mm}$

14930 measured reflections

4520 independent reflections

4172 reflections with $I > 2\sigma(I)$

All H-atom parameters refined

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) -x + 2, -y, -z; (iii) x, y - 1, z; (iv) x + 1, y, z; (v) x - 1, y, z; (vi) -x + 1, -y, -z; (vii) -x + 1, -y + 1, -z + 1; (viii) -x + 1, -y + 1, -z; (ix) x - 1, y - 1, z; (x) -x + 2, -y + 1, -z. *Cg*3 and *Cg*4 are the centroids of the C1*A*-C6*A* and C1*B*-C6*B* rings, respectively.

Data collection: *APEX2* (Bruker, 2006); cell refinement: *APEX2* and *SAINT* (Bruker, 2006); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97*.

NV thanks the University Grants Commission (UGC), Government of India, for a minor research project grant [MRP-2219/06(UGC-SERO)].

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2568).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Botoshansky, M., Herbstein, F. H. & Kapon, M. (1994). Acta Cryst. B50, 191–200.
- Bruker (2006). APEX2 and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.
- Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.

- In, Y., Nagata, H., Doi, M., Ishida, T. & Wakahara, A. (1997). Acta Cryst. C53, 367–369.
- Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. New York: Oxford University Press.
- Mizutani, T., Takagi, H., Ueno, Y., Honiguchi, T., Yamamura, K. & Ogoshi, H. (1998). J. Phys. Org. Chem. 11, 737–742.
- Pecaut, J. & Bagieu-Beucher, M. (1993). Acta Cryst. C49, 834-837.
- Sheldrick, G. M. (2006). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003). Acta Cryst. E59, 0913–0916.
- Zadrenko, P., Gel, M. S., Lopez, P., Ballesteros, P., Fonseco, I. & Albert, A. (1997). Acta Cryst. B53, 961–967.

Acta Cryst. (2009). E65, o156-o157 [doi:10.1107/S1600536808042657]

Morpholinium 2,4,6-trinitrophenolate

N. Vembu and F. R. Fronczek

Comment

The design of organic polar crystals for quadratic non-linear optical applications is supported by the observation that the organic molecules containing π -electron systems asymmetrized by electron donor and acceptor groups are highly polarizable entities in which problems of transparency and crystal growth may arise from their molecular crystal packing (Pecaut & Bagieu-Beucher, 1993). It is known that nitrophenols act not only as π -acceptor to form various π -stacking complexes with other aromatic molecules, but also as an acidic ligand to form salts through specific electrostatic or H-bonding interactions (In *et al.*, 1997). The bonding of electron-donor acceptor complexes strongly depends on the nature of the partners. The linkage could involve not only electrostatic interactions, but also the formation of molecular complexes (Zadrenko *et al.*, 1997). It has been reported that proton transferred thermochromic complexes were formed between phenols and amines in apolar solvents at low temperature if an appropriate H-bonding network between phenols and amines were present to stabilize it (Mizutani *et al.*, 1998). Pyridinium picrate has been reported in two crystalline phases and it appears in both phases as an internally linked H-bonded ion pair. These two phases are termed as molecular crystals rather than salts based on their structural arrangements (Botoshansky *et al.*, 1994). A similar structural arrangement has also been reported for 4-dimethylaminopyridinium picrate (Vembu *et al.*, 2003). In continuation of our investigations on the supramolecular architecture of picrates, the X-ray diffraction study on the title compound is carried out.

The asymmetric unit of (I) contains two morpholinium cations and and two 2,4,6-trinitrophenolate anions. (Fig.1). The morpholinium cation is puckered in both the molecules with the Cremer and Pople puckering parameters Q, θ and φ (Cremer & Pople, 1975) in the two molecules being, 0.590 (1)Å & 0.588 (1) Å, 179.7 (2)° & 0.7 (1)°, 285 (13)° & 63 (11)°, respectively. The morpolinium cation in both the molecules adopt a chair conformation as discerned from the respective torsion angles.

The crystal structure of (I) is stabilized by N—H···O and C—H···O interactions. The range of H···O distances (Table 1) found in (I) agrees with those found for N—H···O (Jeffrey, 1997) and C—H···O hydrogen bonds (Desiraju & Steiner, 1999). The N20A—H20B···O7Bⁱ and N20A—H20B···O15Bⁱ interactions form a pair of bifurcated donor bonds that form a motif of graph set (Bernstein *et al.*, 1995; Etter, 1990) R_1^2 (6). Another pair of bifurcated donor bonds consists of the N20B—H20C···O7Aⁱⁱ and N20B—H20C···O9Aⁱⁱ interactions that also generate a R_1^2 (6) motif. The N20B—H20D···O12Aⁱⁱⁱ and C21B—H21C···O12Aⁱⁱⁱ interactions constitute a pair of bifurcated acceptor bonds that generate a ring motif of graph set R_2^1 (5). The N20A—H20A···O17B, N20A—H20B···O7Bⁱ and N20A—H20B···O15Bⁱ interactions generate a cooperative H-bonded network. Another cooperative H-bonded network is formed by the interactions, N20B—H20C···O7Aⁱⁱ, N20B—H20C···O9Aⁱⁱ, N20B—H20D···O12Aⁱⁱⁱ and N20B—H20D···O17A^{iv}. These two networks generate an infinite one dimensional chain along the base vector [100]. The C18A—H18A···Cg4^{viii} interaction (Table 2) is classified as an offset face to face interaction with $\gamma = 20.34^\circ$ with a perpendicular distance 2.897Å whereas the C22B—H22C···Cg3^{ix} is termed as edge to face interaction with $\gamma = 20.34^\circ$ with a perpendicular distance 2.956Å where Cg4 is the centroid of the ring formed by the atoms C1B—C6B and Cg3 is the centroid of the ring formed by the atoms

C1A—C6A. There are two face to face $\pi \cdots \pi$ interactions in the title compound with coordinates $Cg3 \cdots Cg3$ (2 - x, 1 - y, -z) with $\alpha = 0.00^\circ$, $\beta \& \gamma = 19.38^\circ$, with perpendicular distance 3.449Å and $Cg4 \cdots Cg4$ (2 - x, 1 - y, 1 - z) with $\alpha = 0.02^\circ$, $\beta \& \gamma = 18.71^\circ$, and perpendicular distance 3.461 Å.

The interplay of strong N—H···O and weak C—H···O, C—H··· π and π ··· π interactions with different strengths, directional preferences and distances presents a complex mosaic of interactions. The three dimensional arrangement of 2,4,6-trinitrophenolate and morpholinium moieties in the unit cell, shows that the title compound is an internally linked hydrogen bonded ion pair and hence can be regarded as a molecular crystal rather than a salt.

Experimental

2,4,6-Trinitrophenol (5.2 mmol) dissolved in aqueous ethanol (25 ml) was added dropwise to morpholine (5.7 mmol) in aqueous ethanol (25 ml). The above solution was constantly stirred at room temperature for 2 hrs. The precipitated product was filtered and recrystallized from aqueous ethanol. Yield 75% (3.9 mmol).

Refinement

All H-atoms were located in difference maps and their positions and isotropic displacement parameters were freely refined.

Figures

Fig. 1. The asymmetric unit of (I) with the atoms labelled and displacement ellipsoids depicted at the 50% probability level for all non-H atoms. H-atoms are drawn as spheres of arbitrary radius.

Fig. 2. The molecular packing viewed down the *a*-axis. Dashed lines represent the N—H…O and C—H…O interactions within the lattice.

Morpholinium 2,4,6-trinitrophenolate

Crystal data

 $C_4H_{10}NO^+ \cdot C_6H_2N_3O_7^-$

Z = 4

$M_r = 316.24$	$F_{000} = 656$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.666 {\rm Mg} {\rm m}^{-3}$
Hall symbol: -P 1	Melting point: 418 K
<i>a</i> = 8.3179 (5) Å	Cu K α radiation $\lambda = 1.54178 \text{ Å}$
<i>b</i> = 9.5733 (5) Å	Cell parameters from 9038 reflections
c = 16.8451 (10) Å	$\theta = 2.6 - 70.3^{\circ}$
$\alpha = 91.292 \ (4)^{\circ}$	$\mu = 1.28 \text{ mm}^{-1}$
$\beta = 98.604 \ (4)^{\circ}$	T = 90.0 (5) K
$\gamma = 107.589 \ (4)^{\circ}$	Needle, yellow
$V = 1261.00 (13) \text{ Å}^3$	$0.25 \times 0.22 \times 0.13 \text{ mm}$

Data collection

Bruker Kappa APEXII CCD area-detector diffractometer	4520 independent reflections
Radiation source: fine-focus sealed tube	4172 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.025$
T = 90.0(5) K	$\theta_{\text{max}} = 70.4^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.7^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2006)	$h = -9 \rightarrow 8$
$T_{\min} = 0.745, T_{\max} = 0.851$	$k = -11 \rightarrow 11$
14930 measured reflections	$l = -20 \rightarrow 20$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	All H-atom parameters refined
$R[F^2 > 2\sigma(F^2)] = 0.029$	$w = 1/[\sigma^2(F_o^2) + (0.0404P)^2 + 0.5962P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.075$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.04	$\Delta \rho_{max} = 0.25 \text{ e } \text{\AA}^{-3}$
4520 reflections	$\Delta \rho_{\rm min} = -0.21 \text{ e} \text{ Å}^{-3}$
494 parameters	Extinction correction: SHELXL97 (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct	Extinction coefficient: 0.0031 (2)

methods

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1A	1.09611 (17)	0.49974 (13)	-0.12320 (7)	0.0127 (3)
C2A	1.25008 (16)	0.60126 (14)	-0.07769 (7)	0.0132 (3)
C3A	1.25234 (17)	0.72107 (14)	-0.03028 (7)	0.0136 (3)
C4A	1.10041 (17)	0.74600 (14)	-0.02152 (7)	0.0133 (3)
C5A	0.94390 (17)	0.65574 (14)	-0.06295 (7)	0.0132 (3)
C6A	0.94588 (16)	0.53913 (14)	-0.11109 (7)	0.0130 (3)
O7A	1.09018 (12)	0.39624 (10)	-0.17139 (5)	0.0155 (2)
N8A	1.41454 (14)	0.58076 (12)	-0.08198 (6)	0.0147 (2)
O9A	1.42204 (12)	0.45459 (10)	-0.09063 (6)	0.0192 (2)
O10A	1.54125 (12)	0.69100 (10)	-0.07467 (6)	0.0212 (2)
N11A	1.10530 (14)	0.86621 (12)	0.03319 (6)	0.0143 (2)
O12A	0.96928 (12)	0.87274 (10)	0.05109 (5)	0.0179 (2)
O13A	1.24520 (12)	0.95709 (10)	0.05934 (6)	0.0194 (2)
N14A	0.78244 (14)	0.44885 (12)	-0.15723 (6)	0.0134 (2)
O15A	0.74323 (12)	0.31494 (10)	-0.15316 (6)	0.0189 (2)
O16A	0.69331 (12)	0.51112 (11)	-0.19769 (6)	0.0199 (2)
017A	0.10539 (11)	0.00176 (10)	0.25016 (6)	0.0168 (2)
C18A	0.20658 (18)	-0.08501 (15)	0.28608 (9)	0.0184 (3)
C19A	0.32219 (18)	-0.00503 (15)	0.36195 (8)	0.0171 (3)
N20A	0.43482 (14)	0.13842 (12)	0.34067 (7)	0.0133 (2)
C21A	0.32929 (17)	0.22701 (14)	0.30180 (8)	0.0145 (3)
C22A	0.21200 (17)	0.13892 (15)	0.22823 (8)	0.0162 (3)
C1B	1.20643 (17)	0.72087 (13)	0.48672 (7)	0.0131 (3)
C2B	1.02460 (17)	0.69732 (14)	0.46441 (7)	0.0136 (3)
C3B	0.91624 (17)	0.59563 (14)	0.40640 (7)	0.0133 (3)
C4B	0.98544 (17)	0.50853 (14)	0.36284 (7)	0.0133 (3)
C5B	1.15875 (17)	0.52696 (14)	0.37604 (7)	0.0134 (3)
C6B	1.26371 (16)	0.62652 (14)	0.43659 (8)	0.0134 (3)
O7B	1.30043 (12)	0.81736 (10)	0.53895 (5)	0.0166 (2)
N8B	0.95032 (14)	0.79251 (12)	0.50610 (6)	0.0141 (2)
O9B	0.97719 (12)	0.80272 (10)	0.57994 (5)	0.0181 (2)
O10B	0.86456 (13)	0.85646 (11)	0.46437 (6)	0.0208 (2)
N11B	0.87435 (14)	0.39640 (12)	0.30331 (6)	0.0143 (2)
O12B	0.93987 (12)	0.32440 (10)	0.26417 (5)	0.0172 (2)
O13B	0.71918 (12)	0.37736 (11)	0.29419 (6)	0.0204 (2)
N14B	1.44400 (14)	0.63651 (12)	0.44848 (6)	0.0152 (2)
O15B	1.52754 (12)	0.66652 (11)	0.51713 (6)	0.0196 (2)
O16B	1.50511 (12)	0.61178 (11)	0.38943 (6)	0.0214 (2)
O17B	0.59893 (12)	0.00091 (10)	0.24493 (5)	0.0160 (2)
C18B	0.71842 (18)	-0.05139 (15)	0.29696 (8)	0.0170 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C19B	0.72407 (18)	-0.19629 (15)	0.26204 (8)	0.0160 (3)
N20B	0.77466 (14)	-0.17515 (12)	0.18046 (6)	0.0132 (2)
C21B	0.65320 (17)	-0.11684 (14)	0.12743 (8)	0.0144 (3)
C22B	0.64834 (18)	0.02484 (15)	0.16719 (8)	0.0157 (3)
H3A	1.360 (2)	0.7844 (18)	-0.0031 (10)	0.017 (4)*
H5A	0.838 (2)	0.6748 (17)	-0.0584 (9)	0.016 (4)*
H18A	0.271 (2)	-0.1092 (17)	0.2483 (10)	0.018 (4)*
H18B	0.126 (2)	-0.1764 (19)	0.2992 (10)	0.023 (4)*
H19A	0.396 (2)	-0.0592 (18)	0.3852 (10)	0.018 (4)*
H19B	0.261 (2)	0.0171 (17)	0.4011 (10)	0.017 (4)*
H20A	0.500(2)	0.1174 (18)	0.3066 (10)	0.019 (4)*
H20B	0.508 (2)	0.1873 (19)	0.3868 (11)	0.025 (4)*
H21A	0.263 (2)	0.2475 (16)	0.3409 (9)	0.012 (4)*
H21B	0.405 (2)	0.3182 (18)	0.2864 (9)	0.018 (4)*
H22A	0.135 (2)	0.1928 (17)	0.2053 (9)	0.015 (4)*
H22B	0.276 (2)	0.1212 (17)	0.1890 (10)	0.017 (4)*
H3B	0.797 (2)	0.5873 (17)	0.3967 (10)	0.017 (4)*
H5B	1.207 (2)	0.4711 (17)	0.3456 (10)	0.014 (4)*
H18C	0.827 (2)	0.0221 (17)	0.3037 (9)	0.014 (4)*
H18D	0.680 (2)	-0.0648 (18)	0.3484 (10)	0.020 (4)*
H19C	0.809 (2)	-0.2287 (17)	0.2940 (10)	0.017 (4)*
H19D	0.616 (2)	-0.2714 (18)	0.2553 (10)	0.019 (4)*
H20C	0.780 (2)	-0.260 (2)	0.1599 (10)	0.022 (4)*
H20D	0.885 (2)	-0.109 (2)	0.1881 (10)	0.024 (4)*
H21C	0.689 (2)	-0.1002 (17)	0.0762 (10)	0.015 (4)*
H21D	0.543 (2)	-0.1912 (17)	0.1218 (9)	0.014 (4)*
H22C	0.760 (2)	0.1022 (18)	0.1722 (9)	0.018 (4)*
H22D	0.560 (2)	0.0609 (17)	0.1341 (10)	0.016 (4)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1A	0.0151 (7)	0.0122 (6)	0.0111 (6)	0.0043 (5)	0.0024 (5)	0.0033 (5)
C2A	0.0119 (7)	0.0151 (6)	0.0135 (6)	0.0050 (5)	0.0031 (5)	0.0029 (5)
C3A	0.0138 (7)	0.0142 (6)	0.0116 (6)	0.0027 (5)	0.0018 (5)	0.0023 (5)
C4A	0.0165 (7)	0.0122 (6)	0.0114 (6)	0.0045 (5)	0.0029 (5)	0.0006 (5)
C5A	0.0133 (7)	0.0150 (6)	0.0123 (6)	0.0050 (5)	0.0040 (5)	0.0036 (5)
C6A	0.0118 (7)	0.0143 (6)	0.0117 (6)	0.0022 (5)	0.0017 (5)	0.0024 (5)
O7A	0.0157 (5)	0.0145 (4)	0.0162 (4)	0.0054 (4)	0.0012 (4)	-0.0020 (3)
N8A	0.0128 (6)	0.0155 (5)	0.0153 (5)	0.0042 (4)	0.0013 (4)	-0.0010 (4)
O9A	0.0166 (5)	0.0165 (5)	0.0254 (5)	0.0081 (4)	0.0005 (4)	-0.0028 (4)
O10A	0.0123 (5)	0.0175 (5)	0.0313 (5)	0.0006 (4)	0.0049 (4)	-0.0021 (4)
N11A	0.0162 (6)	0.0144 (5)	0.0129 (5)	0.0053 (4)	0.0027 (4)	0.0010 (4)
O12A	0.0177 (5)	0.0205 (5)	0.0184 (5)	0.0081 (4)	0.0075 (4)	0.0000 (4)
O13A	0.0166 (5)	0.0169 (5)	0.0210 (5)	0.0016 (4)	0.0003 (4)	-0.0051 (4)
N14A	0.0122 (6)	0.0152 (5)	0.0127 (5)	0.0035 (4)	0.0031 (4)	-0.0003 (4)
O15A	0.0174 (5)	0.0138 (5)	0.0227 (5)	0.0013 (4)	0.0027 (4)	-0.0010 (4)
O16A	0.0151 (5)	0.0239 (5)	0.0201 (5)	0.0073 (4)	-0.0019 (4)	0.0037 (4)

O17A	0.0115 (5)	0.0159 (5)	0.0202 (5)	0.0018 (4)	-0.0005 (4)	0.0002 (4)
C18A	0.0145 (7)	0.0140 (6)	0.0254 (7)	0.0033 (5)	0.0014 (6)	-0.0002 (5)
C19A	0.0150 (7)	0.0168 (6)	0.0193 (7)	0.0043 (5)	0.0027 (6)	0.0043 (5)
N20A	0.0124 (6)	0.0141 (5)	0.0130 (5)	0.0041 (4)	0.0014 (5)	-0.0013 (4)
C21A	0.0126 (7)	0.0139 (6)	0.0173 (6)	0.0051 (5)	0.0020 (5)	-0.0001 (5)
C22A	0.0138 (7)	0.0186 (7)	0.0156 (6)	0.0044 (5)	0.0015 (5)	0.0019 (5)
C1B	0.0146 (7)	0.0130 (6)	0.0117 (6)	0.0041 (5)	0.0021 (5)	0.0031 (5)
C2B	0.0150 (7)	0.0142 (6)	0.0127 (6)	0.0056 (5)	0.0039 (5)	0.0024 (5)
C3B	0.0132 (7)	0.0151 (6)	0.0120 (6)	0.0046 (5)	0.0027 (5)	0.0042 (5)
C4B	0.0129 (7)	0.0130 (6)	0.0120 (6)	0.0016 (5)	0.0013 (5)	0.0009 (5)
C5B	0.0162 (7)	0.0133 (6)	0.0122 (6)	0.0054 (5)	0.0044 (5)	0.0021 (5)
C6B	0.0117 (7)	0.0145 (6)	0.0142 (6)	0.0037 (5)	0.0030 (5)	0.0032 (5)
O7B	0.0156 (5)	0.0167 (5)	0.0160 (4)	0.0048 (4)	-0.0013 (4)	-0.0037 (4)
N8B	0.0123 (6)	0.0140 (5)	0.0154 (5)	0.0034 (4)	0.0022 (4)	0.0004 (4)
O9B	0.0205 (5)	0.0218 (5)	0.0126 (4)	0.0068 (4)	0.0041 (4)	-0.0011 (4)
O10B	0.0216 (5)	0.0218 (5)	0.0216 (5)	0.0128 (4)	-0.0010 (4)	0.0004 (4)
N11B	0.0143 (6)	0.0143 (5)	0.0131 (5)	0.0021 (4)	0.0031 (4)	0.0020 (4)
O12B	0.0206 (5)	0.0164 (5)	0.0148 (4)	0.0062 (4)	0.0032 (4)	-0.0021 (3)
O13B	0.0117 (5)	0.0231 (5)	0.0226 (5)	0.0006 (4)	0.0018 (4)	-0.0030 (4)
N14B	0.0140 (6)	0.0161 (5)	0.0154 (5)	0.0046 (4)	0.0020 (4)	-0.0006 (4)
O15B	0.0161 (5)	0.0258 (5)	0.0164 (5)	0.0091 (4)	-0.0037 (4)	-0.0045 (4)
O16B	0.0155 (5)	0.0316 (6)	0.0183 (5)	0.0077 (4)	0.0060 (4)	-0.0025 (4)
O17B	0.0165 (5)	0.0209 (5)	0.0137 (4)	0.0101 (4)	0.0030 (4)	0.0005 (3)
C18B	0.0163 (7)	0.0227 (7)	0.0136 (6)	0.0092 (6)	0.0008 (5)	-0.0006 (5)
C19B	0.0155 (7)	0.0190 (7)	0.0152 (6)	0.0074 (6)	0.0035 (5)	0.0030 (5)
N20B	0.0120 (6)	0.0127 (5)	0.0147 (5)	0.0037 (5)	0.0025 (4)	-0.0015 (4)
C21B	0.0115 (7)	0.0180 (6)	0.0129 (6)	0.0040 (5)	0.0010 (5)	0.0004 (5)
C22B	0.0160 (7)	0.0176 (6)	0.0149 (6)	0.0068 (6)	0.0034 (5)	0.0025 (5)

Geometric parameters (Å, °)

C1A—O7A	1.2511 (16)	C1B—O7B	1.2489 (16)
C1A—C2A	1.4466 (19)	C1B—C2B	1.4490 (19)
C1A—C6A	1.4502 (18)	C1B—C6B	1.4498 (18)
C2A—C3A	1.3765 (18)	C2B—C3B	1.3705 (19)
C2A—N8A	1.4513 (17)	C2B—N8B	1.4652 (16)
C3A—C4A	1.3829 (19)	C3B—C4B	1.3978 (18)
СЗА—НЗА	0.957 (17)	СЗВ—НЗВ	0.958 (17)
C4A—C5A	1.3963 (19)	C4B—C5B	1.3811 (19)
C4A—N11A	1.4449 (16)	C4B—N11B	1.4445 (17)
C5A—C6A	1.3705 (18)	C5B—C6B	1.3777 (18)
C5A—H5A	0.968 (17)	C5B—H5B	0.943 (16)
C6A—N14A	1.4638 (17)	C6B—N14B	1.4563 (17)
N8A—O10A	1.2340 (15)	N8B—O9B	1.2266 (14)
N8A—O9A	1.2347 (14)	N8B—O10B	1.2292 (15)
N11A—O12A	1.2324 (15)	N11B—O13B	1.2328 (15)
N11A—O13A	1.2339 (15)	N11B—O12B	1.2333 (14)
N14A—O16A	1.2262 (15)	N14B—O16B	1.2318 (15)
N14A—O15A	1.2298 (14)	N14B—O15B	1.2356 (15)

O17A—C18A	1.4343 (16)	O17B—C22B	1.4332 (15)
O17A—C22A	1.4363 (16)	O17B—C18B	1.4376 (16)
C18A—C19A	1.5126 (19)	C18B—C19B	1.5110 (18)
C18A—H18A	0.956 (17)	C18B—H18C	0.954 (17)
C18A—H18B	0.982 (18)	C18B—H18D	0.967 (17)
C19A—N20A	1.4957 (17)	C19B—N20B	1.4968 (16)
C19A—H19A	0.964 (17)	C19B—H19C	0.952 (17)
C19A—H19B	0.949 (17)	C19B—H19D	0.957 (17)
N20A—C21A	1.4905 (16)	N20B—C21B	1.4912 (17)
N20A—H20A	0.905 (18)	N20B—H20C	0.888 (18)
N20A—H20B	0.930 (19)	N20B—H20D	0.930 (19)
C21A—C22A	1.5141 (18)	C21B—C22B	1.5134 (18)
C21A—H21A	0.972 (16)	C21B—H21C	0.956 (16)
C21A—H21B	0.976 (17)	C21B—H21D	0.965 (17)
C22A—H22A	0.977 (16)	C22B—H22C	0.985 (17)
C22A—H22B	0.952 (17)	C22B—H22D	1.003 (17)
07A—C1A—C2A	125 64 (12)	07B-C1B-C2B	123 19 (12)
07A - C1A - C6A	122.87(12)	07B-C1B-C6B	125.15(12) 125.55(12)
C^2A — C^1A — C^6A	111 33 (11)	C^2B C^1B C^6B	120.00(12)
C_{3A} C_{2A} C_{1A}	123 85 (12)	C_{3B} C_{2B} C_{1B} C_{2B} C_{1B}	125 69 (12)
C3A - C2A - N8A	116 39 (11)	C3B - C2B - N8B	125.05(12) 116.95(12)
C1A - C2A - N8A	119.75 (11)	C1B - C2B - N8B	117.34(11)
$C^2A - C^3A - C^4A$	119.83 (12)	C^{2B} C^{2B} C^{4B}	117.31(11) 118.12(12)
$C^2A - C^3A - H^3A$	118.7 (10)	C2B—C3B—H3B	119 4 (9)
C4A - C3A - H3A	121 5 (10)	C4B-C3B-H3B	122.5(10)
C_{3A} C_{4A} C_{5A}	121.3(10) 121.30(12)	C5B - C4B - C3B	122.3(10) 121.14(12)
C3A - C4A - N11A	118 73 (12)	C5B— $C4B$ — $N11B$	121.11(12) 119(13(11))
C5A - C4A - N11A	119.96 (11)	C3B - C4B - N11B	119.72 (12)
C6A - C5A - C4A	117 54 (12)	C6B - C5B - C4B	119 39 (12)
C6A - C5A - H5A	120.9 (9)	C6B-C5B-H5B	119.59 (12)
C4A - C5A - H5A	121.6 (9)	C4B - C5B - H5B	121.8(10)
C5A - C6A - C1A	126.08(12)	C5B-C6B-C1B	124.0(10) 124.41(12)
C5A - C6A - N14A	120.00(12) 117.30(11)	C5B - C6B - N14B	116 21 (11)
C1A - C6A - N14A	116 57 (11)	C1B - C6B - N14B	119.37 (11)
0104 - N84 - 094	123 17 (11)	O9B - N8B - O10B	124 48 (11)
010A - N8A - C2A	117 99 (10)	O9B - N8B - C2B	121.16(11) 118.06(10)
O9A = N8A = C2A	118 82 (10)	O10B N8B C2B	117.46(10)
012A $N11A$ $013A$	123.45(11)	013B $N11B$ $012B$	123 32 (11)
012A $N11A$ $C4A$	125.15(11) 118.20(11)	O13B $N11B$ $O12B$	129.52(11) 118.51(11)
013A $N11A$ $C4A$	118 35 (11)	O12B $N11B$ $C4B$	118.17(11)
016A $N14A$ $015A$	124 03 (11)	0.16B - N.14B - 0.15B	123 11 (11)
O16A— $N14A$ — $C6A$	118 12 (10)	O16B $N14B$ $C6B$	123.11(11) 118.08(11)
O15A— $N14A$ — $C6A$	117.85 (10)	O15B— $N14B$ — $C6B$	118 80 (10)
C18A—O17A—C22A	110 98 (10)	$C_{22B} = O_{17B} = C_{18B}$	111.02 (10)
017A-C18A-C19A	110 48 (11)	O17B— $C18B$ — $C19B$	110 24 (11)
017A-C18A-H18A	110.1 (10)	017B $-C18B$ $-H18C$	108 1 (9)
C19A—C18A—H18A	111.4 (10)	C19B-C18B-H18C	111.9 (9)
O17A—C18A—H18B	106.4 (10)	017B—C18B—H18D	107.6 (10)
C19A—C18A—H18B	109.9 (10)	C19B-C18B-H18D	109.5 (10)

H18A—C18A—H18B	108.4 (14)	H18CC18BH18D	109.4 (13)
N20A—C19A—C18A	108.48 (11)	N20B—C19B—C18B	108.76 (11)
N20A—C19A—H19A	107.1 (10)	N20B—C19B—H19C	106.8 (9)
C18A—C19A—H19A	111.6 (10)	C18B—C19B—H19C	111.0 (9)
N20A—C19A—H19B	106.8 (10)	N20B—C19B—H19D	107.1 (10)
C18A—C19A—H19B	112.8 (10)	C18B—C19B—H19D	112.9 (10)
H19A—C19A—H19B	109.8 (14)	H19C—C19B—H19D	110.0 (14)
C21A—N20A—C19A	110.29 (10)	C21B—N20B—C19B	110.35 (10)
C21A—N20A—H20A	110.8 (10)	C21B—N20B—H20C	112.0 (11)
C19A—N20A—H20A	107.0 (10)	C19B—N20B—H20C	109.3 (11)
C21A—N20A—H20B	112.2 (11)	C21B—N20B—H20D	111.0 (11)
C19A—N20A—H20B	109.0 (11)	C19B—N20B—H20D	106.7 (11)
H20A—N20A—H20B	107.4 (15)	H20C—N20B—H20D	107.3 (15)
N20A—C21A—C22A	108.92 (10)	N20B—C21B—C22B	109.01 (10)
N20A—C21A—H21A	107.5 (9)	N20B—C21B—H21C	109.5 (10)
C22A—C21A—H21A	110.5 (9)	C22B—C21B—H21C	110.5 (9)
N20A—C21A—H21B	109.1 (10)	N20B—C21B—H21D	106.1 (9)
C22A—C21A—H21B	110.3 (9)	C22B—C21B—H21D	110.9 (9)
H21A—C21A—H21B	110.6 (13)	H21C—C21B—H21D	110.7 (13)
O17A—C22A—C21A	110.50 (11)	O17B—C22B—C21B	110.54 (10)
O17A—C22A—H22A	106.6 (9)	O17B—C22B—H22C	109.9 (9)
C21A—C22A—H22A	109.2 (9)	C21B—C22B—H22C	111.5 (9)
O17A—C22A—H22B	109.8 (10)	O17B—C22B—H22D	107.0 (9)
C21A—C22A—H22B	110.8 (10)	C21B—C22B—H22D	109.7 (9)
H22A—C22A—H22B	109.8 (13)	H22C—C22B—H22D	108.1 (13)
O7A—C1A—C2A—C3A	174.43 (12)	O7B—C1B—C2B—C3B	178.42 (12)
C6A—C1A—C2A—C3A	-1.07 (17)	C6B—C1B—C2B—C3B	2.76 (18)
O7A—C1A—C2A—N8A	-4.32 (19)	O7B—C1B—C2B—N8B	-0.12 (18)
C6A—C1A—C2A—N8A	-179.83 (10)	C6B—C1B—C2B—N8B	-175.78 (10)
C1A—C2A—C3A—C4A	2.82 (19)	C1B—C2B—C3B—C4B	-1.76 (19)
N8A—C2A—C3A—C4A	-178.39 (11)	N8B—C2B—C3B—C4B	176.79 (11)
C2A—C3A—C4A—C5A	-3.08 (19)	C2B—C3B—C4B—C5B	-1.87 (18)
C2A—C3A—C4A—N11A	175.50 (11)	C2B—C3B—C4B—N11B	177.69 (11)
C3A—C4A—C5A—C6A	1.64 (18)	C3B—C4B—C5B—C6B	4.11 (19)
N11A—C4A—C5A—C6A	-176.93 (11)	N11B—C4B—C5B—C6B	-175.46 (11)
C4A—C5A—C6A—C1A	0.14 (19)	C4B—C5B—C6B—C1B	-2.93 (19)
C4A—C5A—C6A—N14A	-177.27 (11)	C4B-C5B-C6B-N14B	178.15 (11)
O7A—C1A—C6A—C5A	-176.08 (12)	O7B-C1B-C6B-C5B	-175.89 (12)
C2A—C1A—C6A—C5A	-0.42 (18)	C2B—C1B—C6B—C5B	-0.36 (17)
O7A—C1A—C6A—N14A	1.35 (18)	O7B-C1B-C6B-N14B	3.00 (19)
C2A—C1A—C6A—N14A	177.01 (10)	C2B—C1B—C6B—N14B	178.53 (10)
C3A—C2A—N8A—O10A	-30.04 (16)	C3B—C2B—N8B—O9B	128.96 (12)
C1A—C2A—N8A—O10A	148.81 (12)	C1B—C2B—N8B—O9B	-52.38 (15)
C3A—C2A—N8A—O9A	148.13 (12)	C3B—C2B—N8B—O10B	-50.82 (16)
C1A—C2A—N8A—O9A	-33.03 (17)	C1B—C2B—N8B—O10B	127.85 (12)
C3A—C4A—N11A—O12A	-167.89 (11)	C5B—C4B—N11B—O13B	177.35 (11)
C5A-C4A-N11A-012A	10.72 (17)	C3B—C4B—N11B—O13B	-2.22 (17)
C3A—C4A—N11A—O13A	12.32 (17)	C5B—C4B—N11B—O12B	-2.60 (17)
C5A—C4A—N11A—O13A	-169.08 (11)	C3B—C4B—N11B—O12B	177.83 (11)

C5A—C6A—N14A—O16A	50.61 (16)	C5B—C6B—N14B—O16	бB	30.79 (16)
C1A—C6A—N14A—O16A	-127.06 (12)	C1B—C6B—N14B—O16	бB	-148.19 (12)
C5A—C6A—N14A—O15A	-129.58 (12)	C5B—C6B—N14B—O15	5B	-147.88 (12)
C1A—C6A—N14A—O15A	52.76 (15)	C1B—C6B—N14B—O15	5B	33.14 (17)
C22A—O17A—C18A—C19A	60.91 (14)	C22B—O17B—C18B—C	C19B	-61.09 (14)
O17A—C18A—C19A—N20A	-58.84 (14)	O17B—C18B—C19B—N	120B	58.66 (14)
C18A—C19A—N20A—C21A	57.62 (14)	C18B—C19B—N20B—C	21B	-57.23 (14)
C19A—N20A—C21A—C22A	-57.29 (13)	C19B—N20B—C21B—C	22B	56.75 (13)
C18A—O17A—C22A—C21A	-60.32 (14)	C18B—O17B—C22B—C	21B	60.61 (14)
N20A—C21A—C22A—O17A	57.97 (14)	N20B—C21B—C22B—C	017B	-57.89 (14)
Hydrogen-bond geometry (Å, °)				
D—H···A	D—H	H…A	$D \cdots A$	D—H···A
N20A—H20A…O17B	0.905 (18)	1.938 (18)	2.8011 (14)	158.9 (15)
C21A—H21B····O13B	0.976 (17)	2.485 (16)	3.1491 (16)	125.1 (12)
C22B—H22C…O12B	0.985 (17)	2.531 (17)	3.3427 (16)	139.6 (12)
N20A—H20B···O7B ⁱ	0.930 (19)	1.885 (19)	2.6838 (14)	142.6 (15)
N20A—H20B····O15B ⁱ	0.930 (19)	2.225 (18)	2.9229 (15)	131.2 (14)
C18B—H18C···O9B ⁱ	0.954 (17)	2.559 (16)	3.3078 (17)	135.5 (12)
N20B—H20C…O7A ⁱⁱ	0.888 (18)	1.930 (18)	2.6911 (14)	142.8 (15)
N20B—H20C…O9A ⁱⁱ	0.888 (18)	2.255 (18)	2.9248 (15)	132.1 (14)
N20B—H20D…O12A ⁱⁱⁱ	0.930 (19)	2.528 (17)	2.8693 (14)	102.0 (12)
C18B—H18D…O10B ⁱⁱⁱ	0.967 (17)	2.571 (17)	3.1533 (16)	118.8 (12)
C21B—H21C···O12A ⁱⁱⁱ	0.956 (16)	2.514 (16)	3.1210 (16)	121.4 (12)
N20B—H20D…O17A ^{iv}	0.930 (19)	1.946 (19)	2.8182 (14)	155.4 (15)
C3B—H3B…O16B ^v	0.958 (17)	2.495 (18)	3.4394 (17)	168.5 (13)
C5A—H5A···O10A ^v	0.968 (17)	2.492 (17)	3.4436 (16)	167.7 (13)
C18A—H18A…O15A ^{vi}	0.956 (17)	2.474 (17)	3.2628 (17)	139.7 (13)
C21B—H21D····O15A ^{vi}	0.965 (17)	2.461 (17)	3.3679 (16)	156.6 (12)
C21A—H21A····O9B ^{vii}	0.972 (16)	2.499 (16)	3.4139 (16)	156.8 (12)
C21A—H21B…O16A ^{viii}	0.976 (17)	2.473 (16)	3.1274 (16)	124.2 (12)
C22A—H22B···O13A ^{ix}	0.952 (17)	2.595 (17)	3.3916 (16)	141.3 (13)
C18A—H18A…Cg4 ^{ix}	0.958 (18)	2.906	3.718	140.37
C22B—H22C····Cg3 ^x	0.991 (18)	3.152	3.896	133.06

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*+1; (ii) -*x*+2, -*y*, -*z*; (iii) *x*, *y*-1, *z*; (iv) *x*+1, *y*, *z*; (v) *x*-1, *y*, *z*; (vi) -*x*+1, -*y*, -*z*; (vii) -*x*+1, -*y*+1, -*z*; (vii) -*x*+1, -*y*+1, -*z*; (iv) *x*-1, *y*, *z*; (vi) -*x*+1, -*y*, -*z*; (vii) -*x*+1, -*y*+1, -*z*; (vii) -*x*+1, -*y*+

